My name is Arthur Bražinskas (pronounced Bra [zh] inskas), I’m a 3rd (and the final) year natural language processing Ph.D. researcher working on for abstractive opinion summarization. I’m fortunate to part of the ILCC group at the University of Edinburgh and supervised by Ivan Titov and Mirella Lapata.

I focus on low-resource settings where annotated datasets are scarce yet large amounts of unannotated data is available. In these settings, the model learns to summarize without direct supervision or from a few examples. My research is driven by practical problems, and I aim to develop new machine learning methods based on the interplay of theory and practice.

On the machine learning side, I’m interested in Bayesian approaches that model data in terms of random/stochastic variables. These models can naturally capture uncertainty and represent information that is not directly observable in datasets. For training, my methods of choice are variational inference (VAE) and reinforcement learning.

I graduated (MSc. \w distinction) in artificial intelligence from the University of Amsterdam, Netherlands, where I specialized in theoretical machine learning and natural language processing. Before starting my Ph.D., I worked on machine learning modeling at Elsevier, Amazon, and Zalando. I also closely collaborate with Amazon Alexa AI teams in Seattle, USA.

News

2021.11
Lecture on Text Summarization at Yandex (YSDA)
2021.9
Paper "Learning Opinion Summarizers by Selecting Informative Reviews" accepted at EMNLP 2021
2021.7
Invited research talk at Zalando
2021.6
Nominated as an Outstanding Reviewer at ACL 2021